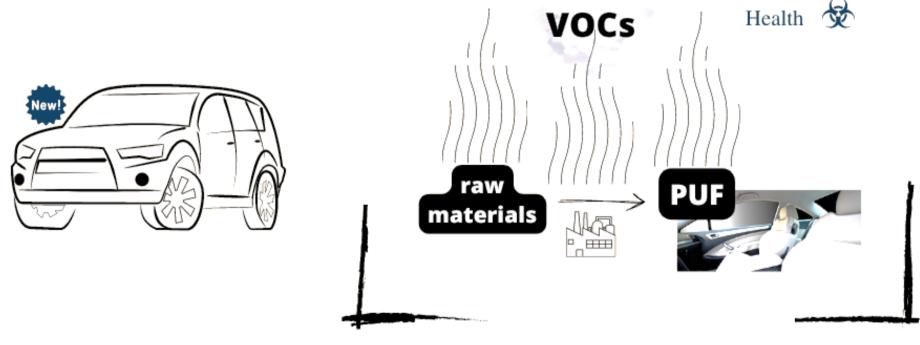
Synthesis of Bio-Based Polyols:

Developing Sustainable Polymers for Automotive Industry

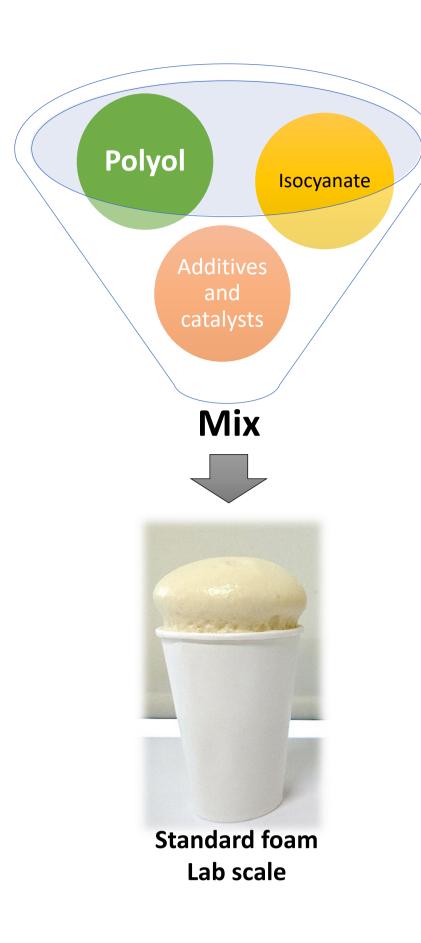
Bruno Godinho¹, N. Gama¹, P. Madureira², G. Marques² and A. Ferreira^{1,3}

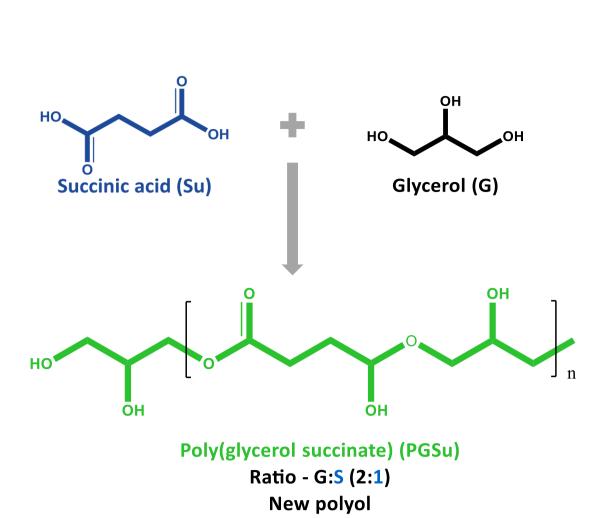
- ¹ CICECO Aveiro Institute of Materials, University of Aveiro, Portugal;
- ² Flexipol Espumas Sintéticas, São João da Madeira, Portugal;
- ³Águeda School f Technology and Management (ESTGA), University of Aveiro, Portugal.

bruno.godinho@ua.pt


INTRODUCTION

Polyurethane foams (PUF) are commonly manufactured using polyols, isocyanates, and additives. Although widely used in the automotive and construction sectors, these foams release volatile organic compounds (VOCs) during production and use, posing health risks to its


users.[1] **Problem**

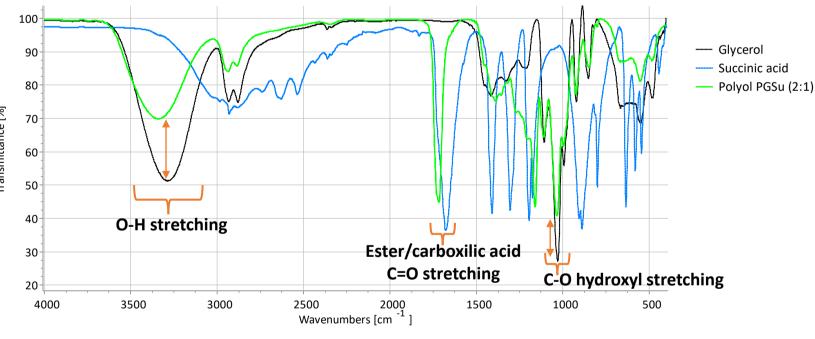

PARR reactor with

thermal jacket produced by us

The GreenAuto project seeks to modernize the automotive sector by advancing towards more sustainable, safer, and healthier vehicles. Inspired by the principles of green chemistry, we explored the synthesis of polyols from bio-based monomers. This approach is intended to avoid **VOCs** from petrochemical refineries.

Potential solution Polyol PGSu as a potential substitute for commercial polyols

METHODOLOGIES AND RESULTS


Polyol PGSu (2:1) synthesis **Standard foam production** Polycondensation synthesis example: Foam production example: **Conditions** Reactants Glycerol \rightarrow 100g 150°C Polyol Repsol R-2510 \rightarrow 18g (or partial substitution with PGSu) Succinic acid \rightarrow 54.3g Nitrogen flow Isocyanate MDI \rightarrow 19.5g No catalyst 150 RPM Catalyst DMCHA \rightarrow 0.16g 7 hours Blowing agent (water) \rightarrow 0.35g Surfactant \rightarrow 0.36g Polyol PGSu (2:1) properties Acid value: 38.7 mg KOH/g **Conditions** Viscosity: 7600 mPa.s Room temperature and paper cup as recipient. 1º mix 1000 RPM for 20 seconds (Polyols, Catalyst, Water and Surfactant)

Hydroxyl number: 780 mg KOH/g

Functionality: between 3 - 8

Colour: yellowish clear

FTIR Highlights

Final: Waiting for the foam growing

2º mix 1000 RPM for 60 seconds (after addition of Isocyanate MDI)

- Hydroxyl groups of glycerol were consumed to produced polyol **PGSu** (decrease bands intensity $3500 - 3000 \text{ cm}^{-1} \text{ and } 1034 \text{ cm}^{-1}$).
- Acid groups of succinic acid were consumed to produce ester bonds (shift from acid C=O 1675 cm⁻¹ to ester C=O 1722 cm⁻¹)

Nuclear magnetic resonance (NMR) Acetone-d₆ solvent 1,2-diacylglyceride (G_{1,2}) 1,2,3-triacylglyceride (G_{1,2,3}) 1-acylglyceride (G₁) 2-acylglyceride (G₂) 1,3-diacylglyceride (G_{1,3}) hydrogens Acid signal signal 17 17 Carbon ¹³C Proton ¹H **NMR** Highlights

- Branched structure signals (1,2,3 triacylglyceride) were not found.
- Primary hydroxyl groups were the most reactive with strong 1-acylglyceride and 1,3-acylglyceride signals.
- Secondary hydroxyl groups also reacted, primarily as end points of the structure (2-acylglyceride), and 1,2-acylglyceride was also detected.
- The signal from the acid groups is weak. The ester bonds signal is nine times more intense. This agrees with the acid value (38.7 mg KOH/g) obtained.
- All these NMR results support the FTIR and ESI-MS analyses.

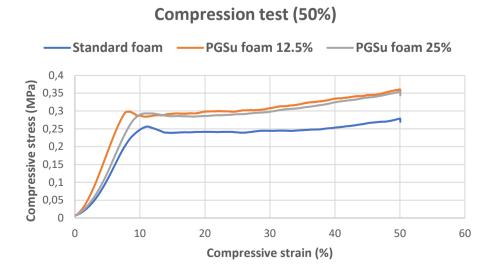
Electrospray ionization mass spectrometry (ESI-MS) Sodium (+ m/z 23) as counter ion – (method range m/z 200 – 2000)

(7) GSuGSuGSuG (5) GSuGSuG 637 (3) GSuG (9) GSuGSuGSuGSuG 927.8(11) GSuGSuGSuGSuGSuG

ESI-MS Highlights

- Five principal oligomers identified **Relative abundance Trimer** (3) GSuG Mw: 266 g/mol **Relative abundance Pentamer** (5) GSuGSuG Mw: 440 g/mol **Relative abundance Heptamer** (7) GSuGSuGSuG Mw: 614 g/mol (9) GSuGSuGSuGSuG **Relative abundance Enneamer** Mw: 788 g/mol Relative abundance Hendecamer (11) GSuGSuGSuGSuGSuG Mw: 962 g/mol
- The five identified masses can be justified by linear oligomer structures that have glycerol as terminal unit.
- The **polyol PGSu** is composed essentially of **oligomers** with less than 650 g/mol.

Foams produced (concept test) PGSu foam 25% **Standard foam PGSu foam 12.5%**


Polyol Repsol R-2510 Polyol Repsol R-2510 Polyol Repsol R-2510 **75%** 87.5% 100% Polyol PGSu Polyol PGSu Polyol PGSu 12.5% 25%

Foam Produce Highlights

Polyol PGSu was used as replacement of commercial polyol (Repsol R-2510): 12.5% and 25% (wt/wt)

A 12.5% substitution did not affect significantly the expansion volume, but it was noticed that the final expansion is maintained with the memory of the cup shape. There is no mushrooming effect, as was the case with the standard formulation.

A 25% substitution reduced the expansion volume, indicating that this formulation cannot tolerate such a high polyol substitution, without any extra adjustments.

CONCLUSIONS

Polyol PGSu is composed of linear polymeric structures with varying functionality (3-8), and a molecular mass lower than 1000g/mol.

The use of PGSu polyol as a direct replacement for commercial polyol up to 12.5% appears to have potential for success, without the need for extra formulation adjustments.

The **exploratory concept** presented here was performed based on a single polyurethane foam formulation. However, It seams that the polyol PGSu has the potential to be used, at least, as an oligomeric chain extender in the production of polyurethane foams.

REFERENCES

[1] Eling Berend, Željko Tomović, and Volker Schädler. "Current and future trends in polyurethanes: An industrial perspective." Macromolecular chemistry and physics 221.14 (2020): 2000114.

[2] Bruno Godinho, Rosana Nogueira, Nuno Gama and Artur Ferreira. "Synthesis of prepolymers of poly(glycerol-co-diacids) based on sebacic and succinic acid mixtures". ACS Omega 2023 8 (18), 16194-16205

ACKNOWLEDGMENTS

This work was funded by the PRR - Plano de Recuperação e Resiliência and by the NextGenerationEU funds at Universidade de Aveiro, through the scope of the Agenda for Business Innovation "GreenAuto: Green innovation for the Automotive Industry" (Project no.54 with the application no. C644867037-00000013). and in the scope of the project CICECO - Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC).

